Re-exam Advanced Logic

July 6th, 2016

Instructions:

- Put your student number on the first page and subsequent pages (not your name, in order to allow for anonymous grading).
- Do not use pencil (or an erasable pen) or a red pen to make your exam.
- Motivate all your answers.
- Your exam grade is computed as $\min (10,($ the sum of all your points +10$)$ divided by 10$)$. For example, someone who would only fill in a student number would get a 1, while someone who would make questions 1-9 perfectly but would skip the bonus question would get $\min (10$, $(90+10) / 10)=10$.
- If you want to inspect your exam after it has been graded, you can do so by making an appointment with Rineke Verbrugge.

Good luck!

1. Induction ($\mathbf{1 0} \mathbf{~ p t}$) Consider the sublanguage $\mathscr{L}_{\neg \vee}$ of the language of propositional logic with \neg and \vee as its only logical operators. (So without \wedge, \rightarrow and \leftrightarrow).
(a) Consider also the inductively defined operator n on well-formed formulas A of this language, which is defined as follows:

- $n(A)=1 \quad$ if A is a propositional parameter
- $n(\neg A)=-1 * n(A)$
- $n(A \vee B)=n(A) * n(B)$

If $n(P)=1$ for some well-formed formula of $\mathscr{L}_{\neg \mathrm{V}}$, what does this tell us about P ? Illustrate this using the formulas $\neg \neg \neg a \vee \neg b$ and $a \vee \neg(b \vee c)$.
(b) Consider also the sublanguage $\mathscr{L} \rightarrow \wedge$ of the language of propositional logic with \rightarrow and \wedge as its only logical operators.
i. Inductively define an operator ' on well-formed formulas of $\mathscr{L}_{\rightarrow \wedge}$ such that for each well-formed formula A of $\mathscr{L}_{\rightarrow \wedge}$, the formula A^{\prime} is a well-formed formula of $\mathscr{L}_{\neg \vee}$ which is logically equivalent to A. (In this part (b) i you do not have to prove this, just to define the right operator ${ }^{\prime}$; the proof of logical equivalence will be (b) ii.)
ii. For the operation ' that you defined in (b) i, prove by induction that for each wellformed formula A of $\mathscr{L}_{\rightarrow \wedge}$ and for all valuations v, we have $v(A)=v\left(A^{\prime}\right)$.
(So that indeed, for each well-formed formula A of $\mathscr{L}_{\rightarrow \wedge}$, the formula A^{\prime} in $\mathscr{L}_{\neg \vee}$ is logically equivalent to A.)
2. Three-valued logics ($\mathbf{1 0} \mathbf{~ p t}$) Using a truth table, determine whether the following inference holds in \mathbf{K}_{3} :

$$
p \supset(p \wedge q) \models_{K_{3}}(\neg p \vee q) \wedge p
$$

Do not forget to draw a conclusion.
3. Tableaus for FDE and related many-valued logics (10 pt)
(a) By constructing a suitable tableau, determine whether the following inference is valid in LP. If the inference is invalid, provide a counter-model.

$$
((p \wedge q) \supset r) \wedge((q \wedge r) \supset s) \vdash_{L P}(p \wedge q) \supset s
$$

NB: Do not forget to draw a conclusion from the tableau.
(b) Is the inference valid in $\mathbf{K}_{\mathbf{3}}$? If so, explain why. If not, provide a counter-model.
4. Fuzzy logic ($\mathbf{1 0} \mathbf{~ p t}$) Determine whether the following holds in the fuzzy logic with $D=$ $\{x: x \geq 0.7\}$. If so, explain why. If not, provide a counter-model and explain why not.

$$
p \rightarrow(q \wedge r) \models_{0.7}(p \rightarrow q) \wedge(p \rightarrow r)
$$

5. Basic modal tableau ($\mathbf{1 0} \mathbf{~ p t}$) By constructing a suitable tableau, determine whether the following is valid in K. If the inference is invalid, provide a counter-model.

$$
\diamond p \vdash(\square \neg p \supset \square(p \supset q)) \wedge(\square p \supset \diamond(q \supset p))
$$

NB: Do not forget to draw a conclusion from the tableau.
6. Normal modal tableau ($\mathbf{1 0} \mathbf{~ p t}$) By constructing a suitable tableau, determine whether the following tense-logical inference is valid in K_{ρ}^{t}. If the inference is invalid, provide a counter-model.

$$
\langle P\rangle(r \vee[P] q) \vdash_{K_{\rho}^{t}}\langle P\rangle(\neg r \supset q)
$$

NB: Do not forget to draw a conclusion from the tableau.
7. Soundness and completeness (10pt) Consider the following tableau in K_{η}, which contains only one branch which we call b :
$\neg \neg(\square \diamond A \wedge \diamond \square B), 0$
$\square \diamond A \wedge \diamond \square B, 0$
$\square \diamond A, 0$
$\diamond \square B, 0$
$0 r 1$
$\square B, 1$
$\diamond A, 1$
$1 r 2$
$A, 2$
$B, 2$

Also consider the following interpretation I :

$$
\begin{aligned}
W & =\left\{w_{0}, w_{1}, w_{2}\right\} \\
R & =\left\{\left\langle w_{0}, w_{1}\right\rangle,\left\langle w_{2}, w_{0}\right\rangle\right\} \\
v_{w_{0}}(A)=v_{w_{0}}(B) & =0 \\
v_{w_{1}}(A)=v_{w_{1}}(B) & =1 \\
v_{w_{2}}(A)=v_{w_{2}}(B) & =0
\end{aligned}
$$

(a) Is I faithful to b ? If so, provide a function $f: \mathbb{N} \rightarrow W$ that shows it is. Else, explain why not.
(b) Applying more rules to b leads to an infinite open branch b^{\prime}. Is I the interpretation induced by b^{\prime} ? Explain your answer by discussing W, R, and v.
8. First-order modal tableau, variable domain (10 pt) By constructing a suitable tableau, determine whether the following is valid in $V K$. If the inference is invalid, provide a countermodel.

$$
\square \forall x A x \supset \square \forall x B x \vdash_{V K} \square \forall x(A x \supset B x)
$$

NB: Do not forget to draw a conclusion from the tableau.
9. Default logic ($\mathbf{1 0} \mathbf{~ p t}$) Consider the following set of default rules:

$$
D=\left\{\delta_{1}=\frac{p: q}{q}, \quad \delta_{2}=\frac{p: \neg q}{r}, \quad \delta_{3}=\frac{q \vee r: \neg q}{\neg q}\right\}
$$

and initial set of facts:

$$
W=\{p\} .
$$

This exercise is about the default theory $T=(W, D)$.
(a) Draw the process tree of the default theory (W, D).
(b) Is p a skeptical consequence of this theory? Explain your answer.
(c) Is q a credulous consequence of this theory? Explain your answer.
(d) When does a theory have more skeptical than credulous consequences?

Bonus; 10 pt For propositional logic, show without using soundness and completeness that

$$
\Sigma, A \vdash B \Longleftrightarrow \Sigma \vdash A \supset B
$$

where Σ is a finite set of premises.
Hint. Use the fact that the result of a tableau test is indifferent to the order in which one lists the premises of the argument and applies the tableau rules.

